Superfast Algorithms for Singular Toeplitz-like Matrices

نویسنده

  • Victor Y. Pan
چکیده

We apply the superfast divide-and-conquer MBA algorithm to possibly singular n × n Toeplitz-like integer input matrices and extend it to computations in the ring of integers modulo a power of a random prime. We choose the power which barely fits the size of a computer word; this saves word operations in the subsequent lifting steps. We extend our early techniques for avoiding degeneration while preserving the Toeplitz structure. Our resulting algorithm supports nearly optimal randomized bit cost estimates for the solution of possibly singular Toeplitz and Toeplitz-like linear systems of equations, various related fundamental matrix computations (rank, null space) as well as computing the univariate polynomial gcd and resultant, Padé approximation, and rational interpolation where all input values are integers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TR-2003004: Superfast Algorithms for Singular Toeplitz/Hankel-like Matrices

Applying the superfast divide-and-conquer MBA algorithm for generally singular n × n Toeplitz-like or Hankel-like integer input matrices, we perform computations in the ring of integers modulo a power of a fixed prime, especially power of 2. This is practically faster than computing modulo a random prime but requires additional care to avoid degeneration, particularly at the stages of compressi...

متن کامل

Iterative Methods for Toeplitz-like Matrices

In this paper we will give a survey on iterative methods for solving linear equations with Toeplitz matrices. We introduce a new class of Toeplitz matrices for which clustering of eigenvalues and singular values can be proved. We consider optimal (ω)circulant preconditioners as a generalization of the circulant preconditioner. For positive definite Toeplitz matrices, especially in the real case...

متن کامل

TR-2004015: Superfast Algorithms for Singular Toeplitz-like Matrices

We apply the superfast divide-and-conquer MBA algorithm to possibly singular n × n Toeplitz-like integer input matrices and extend it to computations in the ring of integers modulo a power of a random prime. We choose the power which barely fits the size of a computer word; this saves word operations in the subsequent lifting steps. We extend our early techniques for avoiding degeneration while...

متن کامل

A Superfast Algorithm for Toeplitz Systems of Linear Equations

In this paper we develop a new superfast solver for Toeplitz systems of linear equations. To solve Toeplitz systems many people use displacement equation methods. With displacement structures, Toeplitz matrices can be transformed into Cauchy-like matrices using the FFT or other trigonometric transformations. These Cauchy-like matrices have a special property, that is, their off-diagonal blocks ...

متن کامل

A Superfast Algorithm for Confluent Rational Tangential Interpolation Problem via Matrix-vector Multiplication for Confluent Cauchy-like Matrices∗

Various problems in pure and applied mathematics and engineering can be reformulated as linear algebra problems involving dense structured matrices. The structure of these dense matrices is understood in the sense that their n2 entries can be completeley described by a smaller number O(n) of parameters. Manipulating directly on these parameters allows us to design efficient fast algorithms. One...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004